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1 Two-step outline of Br(K) ∼= H2(GK, (K
sep)×)

Our next goal is to describe the isomorphism

Br(K) ∼= H2(Gal(Ksep/K), (Ksep)×)

More generally, for any Galois extension L/K,

Br(L/K) ∼= H2(Gal(L/K), L×)

and the first isomorphism is the case L = Ksep. We won’t have time to go into all the details,
since it involves a lot of them, and the details don’t do much to illustrate the ideas, at least
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for me. We will try to outline the construction of the isomorphism, at least. Here is a first
approximation outline.

1. For a finite Galois extension L/K, construct a group isomorphism

βL/K : Br(L/K)→ H2(Gal(L/K), L×) [A] 7→ [{aσ,τ}]

2. Extend the isomorphism to infinite Galois extensions via an isomorphism of directed
systems.

The hard part is step 1. Each of the following 5 steps takes about a page of detailed work:

(1a) Definition of βL/K

(1b) Showing that construction gives a cocycle

(1c) Injectivity of βL/K

(1d) Surjectivity of βL/K

(1e) Homomorphism property of βL/K

In order to see the benefits of going through step 1, first we’ll go through how it gets used in
step 2. Then we’ll describe some of (1a) and (1d), and mostly skip the rest of these details.

2 Details of step 2

In contrast to step 1, step 2 is not so bad. Since it mostly involves the tools that Nick talked
about last time, let’s talk about it first. We will end up with two directed systems, on one
side a system of cohomology groups of Galois groups acting on the nonzero elements of fields,
and on the other side a system of relative Brauer groups.

2.1 Directed system of cohomology groups

We’ve already described the cohomology side, but let’s remember the details. Recall a result
from profinite group cohomology that Stan proved.

Proposition 2.1. Let G be a profinite group, and let U be the set of open normal subgroups
of G. Let A be a discrete G-module. Then

H i(G,A) ∼= lim−→
N∈U

H i(G/N,AN)

where the maps of the directed system are inflation maps.

2



The case we care most about here is when L/K is an infinite Galois extension, since this says
that the profinite group cohomology of Gal(L/K) is determined by the group cohomology
of Galois groups of finite Galois subextensions. If L/K is infinite Galois, the set of open
normal subgroups of G is the set of subgroups Gal(L/E) where E/K is finite Galois, so the
isomorphism becomes

H i(Gal(L/K), L×) ∼= lim−→
E∈E

H i

(
Gal(L/K)

Gal(L/E)
, (L×)Gal(L/E)

)
∼= lim−→

E∈E
H i(Gal(E/K), E×)

For E1, E2 ∈ E with E1 ⊂ E2, the maps of the directed system are the inflation maps

θ12 = Inf : H2(Gal(E1/K), E×1 )→ H2(Gal(E2, K), E×2 )

As an aside, this map is induced by restriction maps

Gal(E2/K)→ Gal(E1/K) σ 7→ σ|E1

in the following way. If φ : Gal(E1/K)2 → E×1 is a 2-cocycle, then for σ, τ ∈ Gal(E2/K),(
θ12(φ)

)
(σ, τ) = φ(σ|E1 , τ |E1)

Ok, the previous equation isn’t technically right, because it involves cocycles instead of
homology classes in H2, but practically speaking it is what’s going on.

2.2 Directed system of relative Brauer groups

Recall that for an extension L/K, the relative Brauer group L/K is the kernel fitting into
the exact sequence

0→ Br(L/K)→ Br(K)
[A] 7→[A⊗KL]−−−−−−−→ Br(L)

Last time, Nick proved that

Br(K) =
⋃

Br(E/K)

with the union taken over finite Galois extensions E/K. Let L/K be (infinite) Galois, and
E the set of finite Galois subextensions K ⊂ E ⊂ L. We will need the following slight
generalization of this.

Lemma 2.2. Let L/K be a Galois extension, and E the set of finite Galois subextensions
K ⊂ E ⊂ L. Then

Br(L/K) =
⋃
E∈E

Br(E/K)

Proof. The inclusion ⊃ is obvious from the fact that if a K-algebra A splits over E (that is
A ⊗K E ∼= Mn(K)) then tensoring further up to L still makes it a matrix algebra. So we
just need to prove ⊂.

Let [A] ∈ Br(L/K) with representative A of degree n, so dimK A = n2. By definition of
Br(L/K), there is an isomorphism

A⊗K L Mn(L)α
∼=
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Let e1, . . . , en2 be a K-basis of A, and consider the elements α(ej ⊗ 1) ∈ Mn(L). There
are only finitely many entries (from L) in the matrices α(ej ⊗ 1), so let E ⊂ L be a finite
extension of K containing all entries of all matrices α(ej ⊗ 1) for j = 1, . . . , n2. We can
further enlarge E to make E/K Galois if necessary.

Then the image of α lies in Mn(E), so restricting α gives an isomorphism

A⊗K E
∼=−→Mn(E) a⊗ x 7→ α(a⊗ x)

Hence [A] ∈ Br(E/K). This proves the inclusion ⊂ we needed.

Remark 2.1. It is immediate from the previous equality and the fact that the direct limit
of groups is the disjoint union modulo equivalence that

Br(L/K) = lim−→
E∈E

Br(E/K)

with the maps of this directed system just being inclusions

ι12 : Br(E1/K) ↪→ Br(E2/K) [A] 7→ [A]

Remark 2.2. A useful special case of the previous lemma is L = Ksep. In this case, E is
the set of all1 finite Galois extensions E/K, so the lemma gives

Br(Ksep/K) =
⋃
E∈E

Br(E/K) = Br(K)

2.3 Finalizing step 2

Up till now in step 2, we haven’t made use of step 1, and now is the moment. Using step
1, we have isomorphisms βEi/K : Br(Ei/K)→ H2(Gal(Ei/K), E×i ) fitting into the following
square.

Br(E1/K) Br(E2/K)

H2(Gal(E1/K), E×1 ) H2(Gal(E2/K), E×2 )

ι12

βE1/K
∼= βE2/K

∼=

θ12

If this diagram commutes (this is not obvious, it requires going into details of β maps), then
the isomorphisms βE/K are not merely group isomorphisms, but the collection of them is an
isomorphism of directed systems, which induces an isomorphism on the direct limit, which
is exactly the isomorphism we wanted.

Br(L/K) ∼= H2(Gal(L/K), L×)

1Technicall speaking E is the set of all finite Galois extensions contained in Ksep but this is this only
reasonable meaning of “all” in this context.
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3 Details of step 1 - the isomorphism βL/K for finite

Galois extensions

3.1 Steps (1a), (1b) - construction of βL/K, the 2-cocycle (factor
set) associated to a central simple algebra

Let L/K be a finite Galois extension with Galois group G = Gal(L/K). In this section, we
associate an element of H2(G,L×) to an element [A] ∈ Br(L/K), to construct our map

βL/K : Br(L/K)→ H2(G,L×)

Definition 3.1. Let L/K be a finite Galois extension, and recall that

Br(L/K) =
{

[A] ∈ Br(K) : dimK A = n2, L ⊂ A
}

Let [A] ∈ Br(L/K) with representative A so that dimK A = n2 and L ⊂ A. Let σ ∈ G =
Gal(L/K). Since A is central simple over K and L is simple over K, we can apply the
Skolem-Noether theorem to the two homomorphisms

L ↪→ A a 7→ a

L ↪→ A a 7→ σ(a)

By Skolem-Noether, these are conjugate, which is to say, there exists xσ ∈ A× so that

xσax
−1
σ = σ(a) ∀a ∈ L

Then for σ, τ ∈ G, define
aσ,τ = xσxτx

−1
στ

The collection {aσ,τ} is the factor set of A relative to L.

Remark 3.1. Here are some facts (without proof) which explain various aspects of the
previous definition. Recall G = Gal(L/K).

1. (Lemma 6 of Rapinchuk [2]) The elements xσ (for σ ∈ G) give a basis of A over L,
that is,

A =
⊕
σ∈G

Lxσ

2. The elements aσ,τ lie in L×, so they may be viewed as functions

G×G→ L× (σ, τ) 7→ aσ,τ

3. The products xσxτ for σ, τ ∈ G determine all the multiplication in A, and

xσxτ = aσ,τxστ

hence the collection {aσ,τ} captures all information about multiplication in A.
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4. The functions aσ,τ are in fact 2-cocycles (elements of Z2(G,L×)), since they satisfy the
relations

ρ(aσ,τ )aρ,στ = aρ,σaρσ,τ

for ρ, σ, τ ∈ G. This adresses (1b). Thus we have a map

CSA(L/K)→ H2(G,L×) A 7→ [{aσ,τ}]

By CSA(L/K) I mean central simple K-algebras that split over L.

5. If we replace the central simple algebra A with another Brauer-equivalent central simple
algebra A′ (that is, [A] = [A′]), and repeat the construction to obtain a factor set

{
a′σ,τ
}

for A′, then there are elements bσ ∈ L× such that

a′σ,τ =

(
bσσ(bτ )

bστ

)
aσ,τ

Since
(
bσσ(bτ )
bστ

)
is a 2-coboundary, this says that

[a′σ,τ ] = [aσ,τ ] in H2(G,L×)

Thus we have a well-defined map

βL/K : Br(L/K)→ H2(G,L×) [A] 7→ [{aσ,τ}]

This addresses (1a).

For more details behind all of these facts, see pages 13-14 of Rapinchuk [2].

3.2 Step (1c) - injectivity of βL/K

For (1c), I’m just going to cite Igor’s notes [2].

Lemma 3.1. βL/K is injective.

Proof. Lemma 7 of Rapinchuk [2].

3.3 Step (1d) - surjectivity of βL/K, the algebra (crossed product)
associated to a 2-cocycle (factor set)

To show that βL/K is surjective, we construct an algebra from a cocycle/factor set {aσ,τ}.

Definition 3.2. Continuing the notation of above, we have a finite Galois extension L/K
with G = Gal(L/K). Let {aσ,τ} be a factor set, thought of as an element of Z2(G,L×).
Define the L-vector space

A =
⊕
σ∈G

Lxσ
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Then define multiplication in A as follows. For a, b ∈ L, define

(axσ)(bxτ ) = aσ(b)aσ,τxστ

(recall that aσ,τ ∈ L). Then extend this by L-linearity. The most general way to write this
multiplication is (∑

σ

aσxσ

)(∑
τ

bτxτ

)
=
∑
σ,τ

aσσ(bτ )aσ,τxστ

We then view A as a K-algebra. The K-action is just given by multiplication on the left
(since K ⊂ L, we already know how to multiply elements of K by elements of L). The
algebra A is called the crossed product of L and G relative to the factor set {aσ,τ},
and is denoted (L,G, {aσ,τ}).

Lemma 3.2. Let L/K be a finite Galois extension and G = Gal(L/K), n = [L : K] = |G|.
Let {aσ,τ} be a factor set. The K-algebra A = (L,G, {aσ,τ}) is an associative, unital, central
simple K-algebra containing (an isomorphic copy of) L, and with dimK A = n2, and

βL/K [A] = [{aσ,τ}]

Hence βL/K is surjective.

Proof. Note that the identity element is a−11,1x1. Lemma 8 of Rapinchuk [2].

3.4 Step (1e) - homomorphism property of βL/K

Theorem 3.3. Let L/K be a finite Galois extension. The map

βL/K : Br(L/K)→ H2(Gal(L/K), L×) [A] 7→ [{aσ,τ}]

is a group homomorphism. Since we already showed it to be injective and surjective, it is an
isomorphism.

Proof. Theorem 7 of Rapinchuk [2].

4 Return to step 2, conclusions

Theorem 4.1. Let L/K be an infinite Galois extension and let E be the set of intermediate
finite Galois extension K ⊂ E ⊂ L. The isomorphism βE/K give an isomorphism of directed
systems

(
H2(Gal(E/K), E×), θij

) ∼= (
Br(E/K), ιij

)
. That is, for all E1, E2 ∈ E , E1 ⊂ E2,

the following diagram commutes.

Br(E1/K) Br(E2/K)

H2(Gal(E1/K), E×1 ) H2(Gal(E2/K), E×2 )

ι12

βE1/K
βE2/K

θ12

7



Thus the direct limit of maps βE/K gives an isomorphism on the direct limits.

Br(L/K) H2(Gal(L/K), L×)
βL/K=lim−→βE/K

∼=

In particular, for L = Ksep,

Br(K) = Br(Ksep/K) ∼= H2(Gal(Ksep/K), (Ksep)×)

Proof. Proposition 6 and Theorem 8 of Rapinchuk [2].

4.1 Descrption in terms of cup products

The isomorphism Br(K) ∼= H2(GK , (K
sep)×) can also be described in terms of cup products,

although this requires some langauge which we don’t know.

Proposition 4.2. Let K be a field, let m ∈ Z>0, fix a separable closure Ksep, and let
GK = Gal(Ksep/K). Let L/K be a cyclic Galois extension of degree m contained in Ksep,
and fix an isomorphism

χ : Gal(L/K)
∼=−→ Z/mZ

Then define
χ̃ : GK → Z/mZ σ 7→ χ(σ|L)

so that χ̃ ∈ H1(GK ,Z/mZ). Let δ : H1(GK ,Z/mZ) → H2(GK ,Z) be the coboundary map
of the LES associated to

0→ Z m−→ Z→ Z/mZ→ 0

2 Then consider the cup product map

H2(GK ,Z)×H0(GK , (K
sep)×) H2(GK , (K

sep)×)∪

Under the isomorphism
H2(GK , (K

sep)×) ∼= Br(K)

the element δ(χ̃) ∪ b corresponds to the Brauer class of the cyclic algebra (χ, b).

Proof. Proposition 4.7.3 of Gille & Szamuely [1].

4.2 Compatibility with restriction maps

Finally, we have a result which says that the isomorphisms βL/K are “compatible” with
restriction maps on cohomology and the relative Brauer group maps

Br(K)→ Br(L) [A] 7→ [A⊗K L]

In particular it is “the same” as the Res map on cohomology. This statement is made more
precise by the next proposition.

2Note that we are viewing Z and Z/mZ as trivial GK-modules, and H1(GK ,Z/mZ) = HomZ(GK ,Z/mZ),
so χ̃ ∈ H2(GK ,Z/mZ).
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Proposition 4.3. Let K ⊂ L ⊂ M be a tower of fields with M/K finite Galois. Consider
the homomorphism

ε : Br(M/K)→ Br(M/L) [A] 7→ [A⊗K M ]

Note that Gal(M/L) is a subgroup of Gal(M/K), so there is the (profinite) cohomology map

Res : H2(Gal(M/K),M×)→ H2(Gal(M/L),M×)

Then the following diagram commutes.

Br(M/K) Br(M/L)

H2(Gal(M/K),M×) H2(Gal(M/L),M×)

βM/K∼=

ε

βM/L∼=

Res

In particular, in the case M = Ksep, we note that Lsep = Ksep,Br(K) = Br(Ksep/K),Br(L) =
Br(Lsep/L), so the above commutative square becomes

Br(K) Br(L)

H2(Gal(Ksep/K), (Ksep)×) H2(Gal(Lsep)/L), (Lsep)×)

∼=

[A] 7→[A⊗KL]

∼=

Res

Proof. Proposition 7 of Rapinchuk [2].
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